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ABSTRACT 

Spectral imagery offers additional information about a scene that can enhance an 

analyst's ability to conduct change detection. Automation of change detection is required 

to sift through countless images to identify scenes that have significant intelligence value. 

Change detection" in spectral thermal imagery enables exploitation at night by taking 

advantage of the emissive characteristics of materials. Data collected from the Spatially 

Enhanced Broadband Array Spectrograph System (SEBASS) were used to investigate the 

feasibility of spectral thermal change detection in the long wave infrared (LWIR) region. 

This study used analysis techniques of differencing, histograms, and principal 

components analysis to detect spectral changes and investigate the utility of spectral 

change detection. Many artifacts can influence the sensitivity of change detection 

methods. Temperature dependence and gross registration errors greatly affect an analysts 

ability to make use of spectral thermal data for change detection; however, with effort, 

spectral changes were still detected with these data and suggest that the techniques would 

be useful once the undesirable characteristics are minimized. 
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I.        INTRODUCTION 

Imaging spectroscopy, the collection of spectral information displayed in spatial 

form, has widened prospects for image exploitation and intelligence collection and 

analysis. Broadband images often fail to provide sufficient information to discriminate 

low contrast targets that might be employing concealment techniques. To date, studies in 

spectral imagery have explored the detection of anomalies (i.e. the presence of an 

unnatural objection in a natural background). This would allow the analyst to quickly 

locate concealed targets by exploiting one image at a time. While many would argue that 

anomaly detection is sufficient for most military applications, it will only partially reduce 

the increasingly unmanageable amount of imagery data. To check all anomalies every 

time they appear in an image would still require a great deal of analyst effort, yet most of 

those anomalies will not require repeated analysis - unless something about that anomaly 

changes. 

For example, an analyst might be responsible for monitoring the operational status 

of several ground combatant facilities in a country that is known for a very slow 

operational tempo. On most days, the majority of military vehicles remain in place 

indicating no change in operational status; however, each vehicle is considered an 

anomaly compared to the parking areas, dirt, and vegetation. A reasonably intelligent 

adversary would attempt to increase operational tempo undetected by replacing each unit 

with a similar-looking decoy so that no major change is noticed on broadband imagery. 

The subtle spectral difference may also be overlooked by an analyst who still detects an 

object that differs little from the past several months. However, if the proper change 

detection algorithm were employed in this scenario, the analyst would need to spend little 

time and effort on scenes where little change occurs. Such algorithms could be sensitive 

to subtle spectral changes which would prompt the analyst at the proper time to take a 

closer look at the scene. This would significantly reduce the requirement for in-depth 

analysis on every scene while improving the analyst's ability small but anomalous 

changes. 



Similar examples exist in power plant configuration, chemical and biological 

weapons production, and many other areas in which imagery analysts spend an inordinate 

amount of time. As the number of targets and the amount of data available for each target 

increase, interpretation must be streamlined and automated freeing the analyst to 

investigate images of potentially significant intelligence value. Change detection 

provides a means for eliminating null target areas - areas in which activity is minimal or 

does not fit a predetermined profile. Spectral change detection provides the added 

sensitivity to the change detection process reduces vulnerabilities to camouflage, 

concealment, and deception (CC&D) techniques. 

This study begins to investigate the feasibility of hyperspectral change detection 

in a military context. It focuses on the ability to employ these methods with 

hyperspectral imagery collecting in the long wave infrared (LWIR) region of the 

spectrum. This region comes with a set of unique characteristics and challenges, 

including a dependence on target temperature. The single most important characteristic is 

that thermal sensors do not require daylight for operation thus enabling spectral image 

collection at night. However, the thermal dependence may complicate spectral analysis 

and reduce the sensitivity of change detection techniques. Also, the spectral features of 

interest in military operations are more subtle in the LWIR than in the reflective regions 

of the spectrum such as visible, near infrared (NIK), and short-wave infrared (SWIR). 

This study examines change detection techniques currently used in broadband 

multispectral imagery and summarizes their effectiveness in previous studies. Next an 

overview of the MWIR/LWIR sensor, the Spatially Enhanced Broadband Array 

Spectrograph System (SEBASS), is provided. The study consists of data from two 

collects: the Capabilities and Requirements Development of the SEBASS High Altitude 

Reconnaissance Project (CARD SHARP) and two consecutive overflights of the Camp 

Pendleton Marine Corps Air Station. The CARD SHARP data provide insight to the use 

of spectral change detection of camouflaged vehicles in a heavily vegetated environment. 

The Camp Pendleton data provide similar insight in a military industrial environment. 

These data are evaluated for their utility with respect to change detection and aid in the 



characterization of problems associated with thermal hyperspectral data with regard to 

change detection. 

The quality of both data sets prohibited side-by-side comparisons of a variety of 

techniques previously used in multispectral analysis. Instead, the focus of this study is on 

the sensitivity of the instrument to detect spectral change separate from thermal change in 

two different collection environments. It also investigates useful ways to detect, identify, 

and analyze spectral change. Finally, this study will attempt to assess the feasibility of 

thermal hyperspectral change detection and characterize requirements in signal-to-noise 

ratio and registration accuracy that would greatly improve the change detection process. 





II. BACKGROUND 

A.        SPECTRAL ANALYSIS 

To understand spectral change detection, it is import to first review the 

development of hyperspectral analysis. Most of the current analysis techniques have 

been adapted from mulitspectral analysis and the analysis of three-dimensional matrices. 

Stefanou (1997) applied a signal processing perspective to hyperspectral analysis 

and catalogued 18 different techniques organized into families based on the amount of a 

priori knowledge required for each technique. His work is summarized in Appendix A. 

Certain spectral analysis techniques are well suited for change detection. This section 

will cover those techniques. 

For illustration purposes, this chapter will use Landsat TM images to provide a 

consistent comparison of all techniques explained here. The images used are of Boulder, 

Colorado taken in August and October of 1985. They have been subsetted to the same 

1000 x 1000 pixel scene (Figure 2.1). A color version of this figure is available in 

Appendix B. Band 6, the LWIR band, has been omitted. 

7 • -■r.'Mt^^gM 

Figure 2.1: A subset of two Landsat TM images of Boulder, 
Colorado are used as examples in this chapter. 



1. Principal Components Analysis (PCA) 

Since redundancy exists between spectral bands in a hyperspectral image, 

principal components analysis (PCA) seeks to transform the observed spectral axes to a 

new coordinate system ordered according to variance (Stefanou, 1997). The transform 

decorrelates the original information and orders the bands in a way that allows the 

information to be represented by a smaller number of bands. 

PCA uses the Karhunen-Loeve Transform (KLT) which expands the data set as a 

weighted sum of basis functions. These basis functions represent the eigenvectors of the 

covariance matrix of the data set. Therien (1992) describes the discrete form, the DKLT, 

as following the relation, 

N-\ 

*/=5>M*M (2.1) 
H=0 

where rcj are coefficients of orthonormal basis function, tp^n], andx[n] is a random 

sequence of n = {0,1, ... ,7V-1} such that 

x[n} = K,<px[n] + K2<p2[n]+---+KN<pN[n] (2.2) 

The basis function, <p\n\, is orthonormal when it satisfies the relation 

N~l [ 1   i = j 2>#*M^M=jn (2.3) 
«=o \y i *= j 

Figure 2.2 depicts the DKLT. The basis funtions, #>,.[/?], represent the eigenvectors of 

x[n] each weighted by the principal component scores KJ (Stefanou, 1997). 
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Figure 2.2: A graphical depiction of the eigenvectors produced 
from a DKLT (from Therrien, 1992). 

The basic PCA uses eigenvectors of the covariance matrix to create a unitary 

transform matrix. This matrix is applied to each pixel vector and transforms it into a new 

vector with uncorrelated components ordered by variance (Stefanou, 1997). Because 

PCA depends on scene variance both spectrally and spatially, results depend on features 

specific to each scene. As certain features differ in a given scene, certain principal 

components will change while others may not. Figure 2.3 contains the six principal 

components for the August Boulder image. The bands are numbered such that one is the 

most significant band (has the highest eigenvalue). 

It is also important to note that the first several principal component (PC) bands 

carry the most information about scene variance; however, they may not always carry the 

information of interest. The signal-to-noise ratio (SNR) is not the same in all bands 

which can obscure information in higher PC bands. To improve this situation, 

standardized principal components analysis (SPCA) was introduced. SPCA causes each 

spectral band to contribute equal weight by first normalizing the covariance matrix. This 

transforms the covariance matrix to the correlation matrix. Figure 2.4 contains the six 

standardized principal components from the August Boulder image. 
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Figure 2.3: Principal component transform a 6-band Landsat TM 
image of Boulder, Colorado acquired in August, 1985. 
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Figure 2.4: Standardized principal components produced from the 
same Landsat image in Figure 2.3. 



2. Spectral Angle Mapper 

Spectral angle mapper (SAM) measures the spectral similarity between a 

reference spectrum and the spectra found at a pixel of the image. This assumes that the 

spectrum of interest is abundant in a given pixel to the extent that it adequately matches a 

pure reference spectrum. Spectral similarity is manifest as an angle between the pixel 

vector and the vector of the reference spectrum. This is illustrated in Figure 2.5. 

Observed Vector 

Reference Vector 

Band 1 

Figure 2.5: A graphical illustration of the spectral angle for a two- 
band example (after Collins, 1996). 

Yuhas, Goetz, and Boardman (1992) express the spectral angle, in radians, as 

COS 
x»u 

COS 

vflFiiy 
/=] 

v/^, 

(2.4) 

Where x is the observed pixel vector and u is the reference vector. The dot product of x 

and u are divided by the product of their Euclidean norms to cancel out the amplitude 

difference of the two vectors. 

The output of a SAM algorithm is a multiband image where the number of bands 

equals the number of reference spectra used in the algorithm. Pixel brightness indicates 

10 



the degree of similarity of the pixel to the given reference spectrum. SAM tends to 

perform independent of scene illumination and sensor gain (Collins, 1996), but its 

deterministic approach ignores the natural spectral variability of a species and spectral 

shifts caused by atmospheric contaminants. 

B.        THERMAL ANALYSIS 

Thermal data come with their own set of characteristics and problems that require 

specific attention when applying techniques developed for other regions of the spectrum. 

The first is that radiation from an object is dependent upon temperature. This is 

expressed in Planck's Radiation Law. 

BAT>-^f- (2-5) 
eXT -1 

Where B(T) is the radiance emitted from a blackbody, C, and C2 are constants 

(1.191xl010 uW/cm2umsr, 1.143xl04 umK respectively), X is the wavelength of the 

radiation observed (in microns), and T is the temperature of the blackbody in degrees 

Kelvin. 

Most issues surrounding thermal data are centered on the confounding of 

temperature with emissivity. Emissivity is the ratio of the emitted radiance of a real 

object to that of a blackbody radiating at the same temperature. Equation 2.8 describes 

the relationship of temperature and emissivity. 

L = r,sMT) (2-6) 

Where L is the radiance at the sensor contributed by the observed object and s is the 

object's emissivity. The radiance of the material is also attenuated by the atmospheric 

transmittance, tx- 

Temperature has a dramatic effect on an object's emitted radiance, and therefore 

makes it difficult to distinguish the type of material observed from its temperature. It 

then becomes important to separate the two variables by estimating the blackbody 

radiance and dividing it from Equation 2.6.  Before this can be accomplished, we must 

11 



estimate the effects of atmospheric attenuation and sources of radiation that reach the 

sensor not related to the obect's emission. Total at-sensor radiance can be expressed as 

Lm=TzsxBz(T)+rz{l.O-s,)L 1downwelling upwelling (2.7) 
Object Radiance 
at the Sensor 

Downwelling Radiance 
at the Sensor 

Upwelling Radiance 
at the Sensor 

In addition to the object radiance, radiance from the atmosphere itself contributes to the 

total at-sensor radiance. Figure 2.6 illustrates the process of thermal radiative transfer. 

TÄeÄBÄ(T)+h(1.0-e^LD_!ling 

Figure 2.6:   A diagram of the components of emitted radiation reaching the sensor. 

To compensate for the atmosphere, Hackwell and Hayhurst (1995) developed the 

plastic ruler technique specifically for infrared hyperspectral remote sensing. This 

technique assumes an emissivity of 1.0 for some key scene elements thus eliminating the 

downwelling radiance contribution in Equation 2.9. Collins (1996) provides a more 

detailed description of the plastic ruler atmospheric compensation technique. In order to 

accurately use this technique, blackbody emitters with known temperatures must be 

present in the scene. Vegetation is typically used as a blackbody emitter. Once 

atmospheric compensation is complete, Plank's Law (Equation 2.7) can be used to 

determine the temperature of every pixel in the image. 

12 



C.        MULTISPECTRAL ANALYSIS 

Much of the current research on change detection has been applied to 

multispectral imagery in the context of environmental monitoring. Studies usually focus 

on a single technique that seems suited to a specific application such as coastal zone 

monitoring (Weismiller, et cd, 1997) or land cover change (Suga, et al, 1993). What 

follows is a description of several change detection techniques that frequently appear in 

the literature and may have application to hyperspectral imagery. 

1. Image Differencing 

The earliest techniques for comparing two co-registered images acquired at 

different times has been to perform a point-to-point subtraction. Singh (1989) describes 

the operation as 

z*;=x;fe)-*{(o+c (2.8) 

where Dx-- is the difference between the images at times tx and t2 of pixel value x at i,j. 

The superscript, k, represents the spectral band and C is a constant used to prevent 

negative digital numbers. This produces a difference distribution (Figure 2.7) for each 

band where areas of change are found in the tails of the distribution while areas of no 

change fall near the mean. The change threshold is often established by specifying the 

number of standard deviations from the mean. 
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Figure 2.7: A histogram of the differenced image in Figure 2.8. 

Figure 2.8 illustrates this technique. Band 4 is shown for August and October in 

the top two panels, and the difference is shown in the bottom panel. The difference panel 

has been scaled from -128 to 128. Note that bright areas in the change image represent 

areas of increased radiance from August to October, and dark areas represent decreased 

radiance. While it may be useful to threshold the image to highlight the changes, not 

doing so provides a better view of the degree of change. Note the light region around the 

reservior, which has decreased in size. 

Image differencing is the simplest and most widely used of all techniques (Singh, 

1989); however, a number of disadvantages accompany the method. Differencing 

requires precise registration and does not account for the existence of mixed pixels. It 

usually fails to consider the starting and ending point of a pixel in feature space. 

Differencing often loses information. For instance, two differenced pixels can have the 

same value (degree of change), but this says nothing about the type of change that has 

occurred (Riordan, 1980). For instance, a change of 40 may be caused by differencing 

two pixels from 160 to 120 or from 90 to 50. If might be difficult to determine if a lake 

had receded or urban development had increased. 

14 



August 85, Band 4 

/ «r 'j. ^i*^ f^'*1 

October 85, Band 4 

255 

CD 
J2 

TB   128 

b 

Difference: October - August 

„?  *b' *•*-***"">   .JE 
P^Z- 

fS*S« ■*^'--! 
»i 

/***:'  ^   */*<'1f**/<&1K*'^'~ 

128- 

CD 
.O 

E 

0 

c 
CO 

O 

-128- 

August 

October 

Figure 2.8: Image differencing as applied to Landsat TM images 
of Boulder, Colorado acquired on August and October, 1985. 
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2. Image Ratioing 

Similar to differencing, image ratioing is a point-to-point operation that compares 

two images by dividing one by the other. Singh (1989) expresses ratioing as 

/&*=■ 

4M 
(2.9) 

Where Rxfj is the ratio of pixel i,j at times tx and t2. When Rxy = 1, no change has 

occurred in that pixel. When 

has occurred in that pixel. 

Rxt > T, where T is a predetermined threshold, a change 

Unlike differencing, the ratio distribution is non-normal as shown in Figure 2.9. 

This would mean that change thresholds are seldom equal on both sides of the 

distribution. If standard deviations are used to determine the thresholds, then the "areas 

of change" under the distribution curve are not equal, therefore the error rates above and 

below unity will not be equal. For this reason, ratioing is seldom used. Figure 2.10 

depicts image ratioing. Even though a ratio of 1.0 indicates no change, it does not fall on 

the middle gray value. 

Rctio (Band  4) 

Figure 2.9:   The histogram for ratio band 4 of the Boulder scene. 
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Figure 2.10: The same Band 4 images used in Figure 2.8 applied to 
ratioing. Note that the center of the ratio scale is not 1.0. 
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3. Index Differencing 

Image differencing compares single bands but does not account for relationships 

between bands. In order to take advantage of these relationships, an index is created by 

combining two or more bands into one value. Tucker (1979) introduced vegetation 

indices which are the most widely used in remote sensing today. A vegetation index 

takes advantage of the IR ledge, the high radiance difference between visible and near 

infrared wavelengths. Tucker (1979) used Landsat MSS to create three vegetation 

indices: 

Ratio Vegetation Index =  n i (\\ 
Band 2 K    ^ 

XT        T    j-57     4. +•     T J Band4 - Band2 Normalized Vegetation Index =  n in 
Band4 + Band2 K      } 

Transformed Vegetation Index = ,/  1 + 05 (2\T\ 
\vBand4 + Band2^ {      } 

Band 4 is the near infrared band (0.8 - 1.1 (im) and band 2 is the red band (0.6 - 0.7 |im). 

All three of these indices are commonly used today. The normalized vegetation index is 

often referred to as Normalized Differenced Vegetation Index (NDVI). 

Index differencing is also a point-to-point operation where the indices (instead of 

raw pixel values) are subtracted from one another. Index differencing negates the effect 

of multiplicative factors acting equally in all bands such as topographic effects and 

temperature differences (Lillesand and Kieffer, 1987) and has the advantage of 

emphasizing differences in spectral response curves. The main disadvantage with index 

differencing is that it can enhance random or coherent noise not correlated in different 

bands (Singh, 1989). A generalized form of index differencing would be expressed as 

D*" #0" 4(0 (2-13) 

Where DRjj is the index difference of two ratios of bands k and / for pixel i,j of images at 

times t] and t2. 
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Michener and Houhoulis (1997) used NDVI differencing for vegetation changes 

in flooded areas with a high degree of success. They note that, "Interpretability could 

potentially be facilitated by transforming raw spectral data to an appropriate ratio index 

that may be correlated with a specific type of change." Creating an appropriate index 

allows the analyst to emphasize the changes that are important which could inherently 

reduce erroneous detections caused by changes that are not considered significant. This 

technique, however, requires a priori knowledge about the types of changes of interest. 

Figure 2.11 demonstrates NDVI differencing for the Boulder scene. The result is 

similar to other techniques; however, changes in vegetation are more pronounced. Of 

particular interest are the fields in the top right corner. The health of the fields appear to 

have decreased from August to October which is indicated by a low pixel value. 
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Figure 2.11: NDVI differenced image of the Boulder scene. 
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4. Principal Components Analysis 

Several approaches to PCA are available for change detection. The first approach 

is the most straight forward. Each image is transformed into its principal components. 

Then a selected band from each image can be compared using other change detection 

techniques such as differencing. Figure 2.12 illustrates the progression of this method, 

and Figure 2.13 apply the technique to the Boulder scene. 
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Figure 2.12. Principal components analysis where band-by-band 
differencing is used. 
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Figure 2.13: Differenced principal components bands of the Landsat Boulder image. 
Each band represents the difference of the August PC band from the same PC band in 

October. 
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The second approach combines both images into one data set. For instance, if 

both images contained three bands, the combined data set would contain six bands. The 

new data set is transformed into its principal components which is analyzed to determine 

which band contains the relevant change information (Singh, 1989). Figure 2.14 

illustrates this approach. Finding the appropriate band can be difficult, but once found, 

will probably remain consistent for similar data sets and targets. 

Image 
1 

Image 
2 

6-band 
Image 

PCA 

Figure 2.14. Spectral Principal Components Analysis. 

Michener and Houhoulis (1997) refer to this approach as spectral principal 

components analysis. They applied spectral PCA to three three-band SPOT multispectral 

High Resolution Visible (HRV) images of pre-flood (two images) and post-flood (one 

image) conditions in southwest Georgia associated with Tropical Storm Alberto in July, 

1994. Analysis of the eigenstructure and visual inspection of the PC bands indicated that 

bands 3 and 4 were attributable to infrared changes caused by the drier vegetation in the 

pre-flood images. PC bands 6, 8, and 9 accounted for spectral variability among the red 

and green bands of the three images. PC Bands 1, 2 appeared to be related to overall 

brightness while bands 5 and 7 were related to changes in the two pre-flood images. 

Applying the same procedure to the Boulder imagery produced similar results. Figure 

2.15 shows the first six bands. Band 1 most closely represents visible overall radiance. 

Change in the lake water level and vegetation health is most evident in bands 4, and 5. 

Figure 2.16 shows these three eigenvectors. Each eigenvector was separated into the six 

bands associated with their respective dates and overlaid to allow for easier comparison. 
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Eigenvector 1 has all positive weights indicating that all bands have been summed 

together. In eigenvector 4, the first six bands have positive weights while the last six 

bands are mostly negative indicating the two dates have been differenced. Only Landsat 

band 4 (4/10) has the same weight in both images indicating that it was not used to create 

the change result in PC band 4. Conversely in eigenvector 5, Landsat band 4 is the only 

band used. In this case, PC band 5 produces a result useful in studying changes in 

vegetation while PC band 4 provides information regarding other changes.. 

24 



f / 

'■' '■*#? 

tes:. 

■■i>\.   - z&&**:-.s •■yfe Jfc- 

5 PliLSy I!äQKP< -WEB ■•>^'«äyaeäi 

._;;;r;^.,.._\; 

äs*)aj 

Figure 2.15: The first 6 PC bands produced by combining the two 
Boulder images and conducting the transform on the 12-band 

composite image. 
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Figure 2.16: A sample of three eigenvectors for the 12-band composite image. The 
bands are separated into two lines by date and overlaid for a better comparison. 

A third approach to PCA-based change detection is to first produce single-band 

index images of each image, combine the index images into one multi-band data set, and 

perform PCA on the new data set. Figure 2.17 illustrates this approach. Subsequent 

analysis of the PC bands is the same as that of the previous approach. 
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Figure 2.17. NDVI-based Principal Components Analysis. 

Michener and Houhoulis (1997) apply this method to "NDVI-PCA". NDVI 

images were produced from the three SPOT images (two pre-flood and one post-flood). 

The NDVI images were merged and transformed. Further analysis showed that PC band 

1 related to overall brightness in the images. PCA band 2 related to differences between 

pre-flood and post-flood images, and PCA band 3 related to differences between the two 

pre-flood images. Similar results were achieved with the Boulder scene (Figure 2.18). PC 

band 1 used weights of -0.789 (for the first date) and -0.614 (for the second data). The 

negative values caused the gray scale to invert, but since the signs are the same PC band 1 

equates to overall brightness. PC band 2 uses weights of 0.614 and -0.789 which 

indicates that it contains the change information. 

Studies indicate that PCA-based change detection does not perform as well as 

other simpler techniques (Singh, 1989; Michener and Houhoulis, 1997). It is also 

computationally intensive and requires sophisticated analyst input. 
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Figure 2.18: Two NDVI images combined and converted to 
principal components. PC band 2 identifies the areas of change. 
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5. Post Classification Comparison 

Post classification comparison produces change maps by comparing segmented 

classes produced from two images (Singh, 1989). Figure 2.19 illustrates the technique. 

Both images undergo supervised or unsupervised classification. Similar classes from 

both images are differenced to produce change classes which are then merged into one 

result. 
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Figure 2.19: A flow diagram illustrating post classification 
comparison. 

This technique minimizes the effects of differences in atmospheric conditions, 

solar angle, and sensor gain. It also reduces the need for accurate registration because the 

classes usually represent larger areas (Singh, 1989). It is likely, however, that registration 

would become more of an issue when attempting to observe smaller targets (i.e. tanks and 

trucks). Figure 2.20 demonstrates post classification comparison with the Boulder scene. 
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Figure 2.20: Post classification comparison as applied to the water 
class on the Boulder scene. 
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The rules of joint probability apply to post classification comparison. Errors can 

be multiplied through to the change result. For example, the accuracy of a particular 

classification technique may be 0.8 for both images. When the images are compared, the 

change detection accuracy becomes 0.8 x 0.8 = 0.64 (Singh, 1989). This multiplication 

of errors causes the post classification comparison to perform badly against the simpler 

differencing techniques. Singh (1989), found that post classification comparison 

performed the worst of all techniques tested with an accuracy of only 51.35%. 

6. Direct Multidate Classification 

Direct multidate classification, sometimes referred to as temporal change 

classification (TCC), supposes that spectral data from combined sets of images would be 

similar in areas of no change and noticeably dissimilar in areas of change (Weismiller, 

1977) Multiple images are combined into one data set before applying classification. 

Supervised or unsupervised classification is applied to both images simultaneously. 

In the supervised classification, training sets are obtained that represent areas of 

change and no change. The training sets are used to derive statistics that define the 

feature space. In unsupervised classification, an analysts must first inspect portions of the 

scene where known changes have occurred. Classes are then derived using cluster 

analysis. (Singh, 1989) 

Weismiller (1977) introduced this technique for applications in coastal studies. 

He used clustering and layered spectral/temporal classification. Selected bands were used 

as input to decision functions that followed a decision tree until a change was detected. 

Michener and Houhoulis (1997) also employed this technique in their flood study of 

southwest Georgia. Three SPOT-XS images were combined into one nine-band 

composite image. They used an unsupervised method, iterative self-organizing data 

analysis (ISODATA), to generate 50 change classes. In a second approach, Michener and 

Houhoulis converted the three images to single-band NDVI images thus creating a three- 

band data set instead of the previous nine. The same unsupervised classification 

technique was used to produce the change classes. They found that the NDVI approach 

was successful in detecting changes in vegetation due to flooding, and improved the 
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accuracy by 6.3% over standard post classification techniques.    However, multidate 

classification did not perform as well as differencing and PCA. 

Overall, multidate classification proved to be "very complex and computationally 

intensive" (Singh, 1989). It has also been difficult to label change classes and 

redundancy in spectral information is often present in some bands (Michener and 

Houhoulis, 1997). Weismiller (1997) also concluded that the technique performed 

poorly. 

Figure 2.21 demonstrates the technique with the Boulder Landsat data using 

ISODATA classification in ENVI. In this case, the procedure was iterated three times 

and seven classes were created. A color version of this figure is contained in Appendix 

B. Class 3 contains change information pertaining to increased vegetation such as that 

caused by that surrounding the receding lake. Class 7 contains change information 

pertaining to decreased vegetation health in the fields in the top right corner; however, 

this class also includes data that cannot be attributed to areas of change. Without a priori 

information, it might be difficult to discriminate areas of change in these seven classes. 

Figure 2.22 illustrates how three of these classes are distributed using difference 

band 3 and band 4 of the October image. A color version of this figure is included in 

Appendix B. Class 4 represents non-natural objects that have exhibited minimal change. 

The scatter plot shows that there is sufficient separation of class 4 and the two change 

classes, 3 and 7. While difference band 3 would not be able to discriminate between 

classes 3 and 7, band 4 from the October image provides additional information that aids 

in describing the type of change that took place. 
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Figure 2.21: Direct multidate classification. The right side is a 
breakout of the various classes. Classes 3 and 7 contain change 

information. 
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7. Change Vector Analysis 

In change vector analysis, each pixel is described as a vector in N-dimensional 

space where N represents the number of bands in the image. This method is illustrated in 

Figure 2.23 using a two-band example. From two images, a change vector is derived by 

subtracting the vector of the image at time, tu from the vector of the image at time, t2. 

The direction of the resultant vector contains information about the type of change that 

has occurred. This usually equates to spectral change. The magnitude of the resultant 

vector contains information about changes in radiance (Singh, 1989). 
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Change Vector 

Band 1 

Figure 2.23. An illustration of the formation of a change vector 
using two-band image vectors (after Deer, 1995). 

In essence, change vector analysis consists of two parts. The first is nothing more 

than band-by-band image differencing. A change vector can be created by making an N- 

band image where each band is the difference of two images of the same band. This is 

the only way to represent all dimensions of a change vector; however, displaying more 

than three dimensions is difficult - if not.impossible. Since the direction of the change 

vector describes the type of change, it is often preferred to represent the change vector as 

a one-band spectral angle image. 

This is similar to the spectral angle mapper (SAM) described in Section 2.2, but 

instead of using a reference spectrum, the dot product is obtained between both images. 

The final result is a change image that is dependent on spectral change and not on 

changes in overall brightness. 

A simpler means of obtaining the same result is to use a common reference 

spectrum for both images in creating individual SAM results. The difference in the two 

SAM results is the spectral angle difference and represents spectral change. Figure 2.24 

illustrates this technique on the Boulder scene using a mean vegetation spectrum as a 

reference. The spectral angle for each image was obtained using the vegetation spectrum. 

The change image shown is the difference between the two SAM results. The August 

and October images shown in Figure 2.24 are the individual SAM results. The vegetation 

closest to the mean spectrum appears dark in those images while areas spectrally different 
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from vegetation, like water, appear bright. The difference image shows areas of increased 

vegetation health as dark and decreased vegetation health as bright. It is apparent that 

even areas spectrally different from vegetation are cancelled if they are common in both 

images. The result is identical to that of obtaining the dot product between the two 

images. 

The spectral angle difference also removes mean differences in radiance such as 

that associated with sensor gain differences, but since vector magnitude is not accounted 

for, it is possible that important changes could be missed. It may be necessary to have 

amplifying information from the N-band change vector image in order to conduct a full 

analysis. 
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Figure 2.24: Spectral angle mapper using a mean vegetation 
spectrum as the reference. 
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8. Previous Studies 

Because of the difficulty in acquiring well understood data, few studies have 

attempted to quantitatively determine the performance of each technique. Instead, most 

studies qualitatively compare techniques or study only one technique. Singh (1984, 

1986) and Michener and Houhoulis (1997) have determined change detection accuracies 

in the context of their specific data sets. 

Singh (1986) concluded that regression produced the highest accuracy followed 

by image ratioing and differencing. Mulitspectral classification such as post- 

classification comparison and direct multidate classification produced the lowest 

accuracy. Singh also attempted local processing (i.e. smoothing, edge enhancement, 

standard deviation texture) in conjunction with a variety of change detection techniques 

but found that they offered little or no improvement in change detection accuracy. 

Michener and Houhoulis (1997) used logistic multiple regression and probability 

vector modeling to evaluate five techniques. They also concluded that differencing 

produced the highest accuracy followed by PCA. While there was little difference in 

accuracy between S-PCA and NDVI-PCA, NDVI-TCC performed better than S-TCC. 

Table 2.1 and Table 2.2 summarize the results of both studies. 

Singh (.1984, 1986, 1989), Michener and Houhoulis (1997) arrived at the same 

fundamental conclusion. They determined that various techniques yield different results 

and that simple techniques outperform sophisticated ones. More advanced techniques are 

being introduced, but as the complexity of the algorithms increase, so does the required 

computation. This is not a desired result since the increased dimensionality of spectral 

data is also driving up computational requirements. It is possible that the most useful 

techniques are already available, and this study focuses on those methods. 
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Techniques Accuracy 

Univariate image differencing, band 2 73.16 
Univariate image differencing, band 4 63.33 
Image ratioing, band 2 73.71 
Image ratioing, band 4 64.99 
Normalized vegetation index differencing 71.05 
Image regression, band 2 74.43 
Low pass filtered image differencing, band 2 72.09 
Background subtraction, band 2 72.32 
High pass filtered image differencing, band 2 70.07 
Standard deviation texture (3 x 3) differencing, band 2 69.95 
Principal components, image differencing 71.49 
(unstandardized) 
Principal component-2, image differencing 64.32 
(standardized) 
Post-classification comparison 51.35 
Direct multidate classification 57.29 

Table 2.1: Summary of the best classification performance for the 
change detection techniques studied (from Singh, 1989). Bands refer 
to Landsat MSS. 

No. Dead Sites No. Live Sites 

Method Correct Incorrect Correct Incorrect Accuracy 

(a) S-TCC 36 10 32 34 0.607 

(b) NDVI-TCC 38 8 37 29 0.670 

(c) S-PCA 33 13 46 20 0.705 

(d) NDVI-PCA 41 5 37 29 0.696 

(e) NDVI-ID 29 17 57 9 0.768 

Table 2.2: Accuracy assessment of five change detection techniques 
used to assess vegetation response to flooding (from Michener and 

Houhoulis, 1997 
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III.      THE SPATIALLY ENHANCED BROADBAND ARRAY 
SPECTROGRAPH SYSTEM (SEBASS) 

This thesis deals with data from the thermal imaging spectrometer, SEBASS. 

SEBASS, under development by the Aerospace Corporation, El Segundo, CA, filled the 

gap in imaging spectroscopy by providing a two-channel system that collected in the 

MWIR and LWIR regions. The instrument (pictured in Figure 3.1) collects 128 bands in 

the MWIR (2.1 - 5.2 urn) and 128 bands in the LWIR (7.8 - 13.4 urn) using a 

bushbroom scanner (Hackwell, 1997). 

Figure 3.1: SEBASS installed in the aircraft atop the roll 
compensator. 

A.        DESIGN 

SEBASS employs a pushbroom collection concept by imaging through a thin slit. 

Light from the slit is split to two spectrographs as depicted in the optical layout in Figure 
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3.2. Two spherically shaped salt (LiF for the MWIR channel and NaCl for the LWIR 

channel) prisms disperse the light on two 128 x 128 element silicon arsenide (SiAs) 

blocked impurity band (BIB) focal plane arrays (FPAs). These FPAs are placed so that 

one dimension of the array captures the dispersed spectrum while the other dimension 

captures across-track spatial information. Along-track spatial information is collected in 

all bands simultaneously as the sensor moves in the direction indicated by Figure 3.3. 

Each element on the array has an instantaneous field of view (IFOV) of 1 mrad (0.057°). 

This provides a 128 mrad (7.30°) total field of view (FOV). The ground sample distance 

(GSD) for a typical altitude of 6000 feet is 6 feet. 

Figure 3.2: The SEBASS optical layout (From Hackwell, 1997) 

wavelength 

spectrograph slit 
on aircraft 

Figure 3.3: The SEBASS FPA configuration (From Hackwell, 1997). 
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Spectral resolution, the spacing between the center wavelengths for each band, 

varies across both the MWIR and LWIR arrays (see Figure 3.4). The MWIR spectral 

resolution varies from 0.064 urn at the low edge to 0.014 urn at the high edge. Likewise, 

the LWIR spectral resolution varies from 0.070 to 0.040 um (Smith and Schwartz, 1997). 

Spectral Resolution 

0.075 

0.070 -: 

0.030 
32 64 

Band Number 

96 128 

Figure 3.4: A plot of the band width of each spectral band for the 
LWIR channel. 

Each FPA has a maximum acquisition rate of 240 Hz; however, at least two 

consecutive frames must be coadded to achieve an acceptable SNR.   Therefore, the ■• 

maximum frame rate for SEBASS is 120 Hz. This is adjustable to achieve a desired SNR 

or to account for major differences in aircraft speed and altitude. 

The sensitivity of the sensor is improved by cooling it to 4°K in a helium-cooled 

dewar (Figure 3.5). The FPAs are then heated to 11°K for improved temperature stability. 

This provides a single frame noise equivalent spectral radiance (NESR) of 1.0 uW/cm2 sr 

urn (u flick) in both channels. Coadding frames reduces the NESR. For example, 240 

coadds improves the NESR to 0.2 u flicks (Hackwell, 1997). Figure 3.6 is a plot of the 

NESR for calibration runs of two flights. 
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Figure 3.5: The flight crew maintains a sufficient liquid helium 
level to keep the FPAs at 11°K. 
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Figure 3.6: The effects of coadding frames on the noise equivalent 
spectral response (from Hackwell, 1997). 
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The instrument is operated in flight by a Sun SPARCstation 20. The flight crew 

monitors data collection from a waterfall display on the SPARC20 monitor. Figure 3.7 is 

a photograph of the SEBASS control console installed in the aircraft. The waterfall 

output is dispayed on the top monitor. The two LCD monitors provide attitude and status 

information as well as video output from a forward-looking video camera. Roll 

correction is provided mechanically by a 1 Hz roll compensator. This adequately reduces 

low frequency roll errors, but high frequency errors (above 1 Hz) are not corrected. Pitch 

and yaw errors are not corrected. 

Figure 3.7: The flight crew monitors SEBASS status and 
operation from this console. 

Initially, the data are collected in 4 byte integer format with a 64 Kb embedded 

binary header. They are converted to 4 byte floating point during preprocessing. The 

data are oriented as band-interleave by pixel (BIP) such that the spectral dimension is 

read first, then the across-track spatial dimension, and finally the along-track (temporal) 
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dimension.  Data values are often represented asN(i,j,k) where i,j, and k represent the 

spectral band, across-track position, and along-track position respectively. 

B.        CALIBRATION 

Raw sensor data are stored on two hard disks (18 gigabytes total) onboard the 

aircraft. After a collect, the data are downloaded to a SparcUltra 2 and stored on either of 

two 20 GB hard disks. The data must be calibrated spectrally and radiometrically before 

it is useful to the user. The instrument has been altered since the initial work reported by 

Collins (1996) and some of the details in the material given here will differ from the 

earlier report. 

1. Spectral Calibration 

Spectral calibration is the process of determining the center wavelength of the 

energy that falls on each pixel in the array. The distribution of the spectrum is neither 

linear across the array nor constant over time, so it is necessary to calibrate the sensor 

periodically - usually prior to a collection exercise. 

The dispersive properties of the prisms in SEBASS cause the image of the slit 

aperture to curve slightly at the focal plane. This curvature varies with position along the 

slit. The spectrum undergoes a similar phenomenon in which the wavelength shifts along 

the in-track (wavelength) dimension of the array. Figure 3.8 and Figure 3.9 depict the 

shape and magnitude of the slit and spectral curvature. In either case, the variation is less- 

than one pixel. Both slit and spectrum curvature are corrected through the wavelength 

calibration which applies a two-dimensional second-order polynomial function to 

determine the center wavelength at each pixel position (Johnson, 1997). 
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Figure 3.8: This graph depicts the shape of the slit image at the FPAs for four 
wavelengths. The variation is less than one pixel. The FPA diagram (right) orients the 

array. (From Hackwell, 1997) 
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Figure 3.9: This graph depicts the shape of the slit image across the spectral dimension. 
The FPA diagram (right) orients the graph, (from Hackwell, 1997) 
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Polymer films are used as calibration standards for the LWIR wavelength 

calibration (Figure 3.10). SEBASS first acquires a 256-frame data set of hot and cold 

blackbody sources, and then acquires similar images after placing one of the polymer 

films in front of the slit aperture. The measured transmittance spectrum of the polymer 

film is the ratio of the images with and without the film (Collins, 1996). A similar 

technique is used for the MWIR channel, but instead of polymer films, a xenon reference 

lamp is used. The location of known absorption bands from the image are compared with 

observed values from the FPA. A wavelength map is generated using the following 

equation: 

A(ij) = «JA, (/)/ + 4 (i)j + 4 (/) (3.1) 

where the coefficients An{i) are functions of the spatial index, /, and for the LWIR 

channel are given as: 

4,(0 = 5.795215x10'- 2.357859 xl0"2/ +1.22243 lxlO"4/2 (3.2) 

4(0 = 1.042670 x 10° -1.700715 x 10-5/ +2.397566 x 10"7/2 (3.3) 

4(0 = -1.419449 xlO-4 (3.4) 

and for the MWIR channel, are given as: 

4(0 = 3.123135 x 10° +4.640077 x 10"4/-2.853933 x 10"5z2 (3.5) 

4(0 = 2.227641 x 10' + 3.827485 x 10"6/ +6.551992 x 10"8/2 (3.6) 

4(0 = -3.186248 xlO-4 (3.7) 

(Johnson, 1997). 

48 



The spectral calibration only documents the position of the center wavelength for 

each pixel. While this is sufficient for most spectral analyses, some approaches may 

require the removal of the spectral curvature. To do this, the image is resampled 

spectrally using a cubic spline interpolator (Smith and Schwartz, 1997). 

Figure 3.10: The polymer film is inserted in place for the LWIR 
wavelength calibration. 

2. Radiometrie Calibration 

Two Santa Barbra Infrared (SBIR) blackbody sources are used during flight to 

provide calibration data of SEBASS between shots. The blackbodies are maintained at 

23.5C and 35.0 °C to provide hot and cold sources for the calibration encompassing the 

range of temperature values expected in the scene. 

The Aerospace Corporation upgraded the FPAs in SEBASS which has eliminated 

early problems with sensor nonlinearity concerning radiometric calibration. This has 

simplified calibration to a two-point linear scheme. Before this linear scheme can be 

implemented, a spectral radiance truth map is computed for each calibration source. This 

is given as 
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Lc{Uj) = LBB[X{ij),Tc] (3.8) 

L
H(U)= Lw[Mij),TH] (3.9) 

where X{i,j) is the instrument wavelength map (from Equation 3.1), Tc is the cold 

blackbody temperature (°K), and LBB is the Planck blackbody function (from Equation 

2.5). 

To provide a low-noise data set for the blackbody calibration measurements, the 

frames (in the k dimension) are averaged together to reduce the measurement to two 

dimensions: 

^c(^/) = Tr2>c(''>M) (3.10) 

^ MiJ) = -zrftNK{iJ,k) (3.11) 

where N(i,j,k) represents the original AT calibration measurements and N(i,j) 

represents the frame-averaged calibration data which is used for radiometric calibration. 

The spectral radiance truth maps are applied to the radiometric calibration which 

is given as: 

L{i,j,k) = G{i,j)N(i,j,k) + 0{i,j) (3.12) 

where N(i,j,k) is the original uncalibrated scene data, G(i,j) is the sensor calibration 

gain given as: 

[,J)    NH(i,j)-Nc(ij) 
(3-13) 

and 0(i,j) is the sensor calibration offset given as: 
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n(-  -\    N^j)Lc(hj) + [-Nc(i,j)]LH(i,j) 
0{i,j) =      ,.  ., ,.  .v  (3.14) 

(Smith and Schwartz, 1997). 

The result is data calibrated for radiance at the sensor. If it is necessary to have 

the data calibrated for ground radiance, then atmospheric calibration such as the plastic 

ruler method (Chapter 2) must also be applied. 

C.        CHARACTERISTICS 

1. Thermal Drift 

SEBASS experiences a slight thermal drift that occurs during operation. With the 

previous FPAs, this drift was nonlinear and required an exponential interpolation 

(Collins, 1996). The current FPAs exhibit linear characteristic, therefore, the drift can be 

corrected using linear interpolation. Runs are invalidated if the thermal drift rate exceeds 

a given threshold, but unacceptably high drift rates seldom occur. 

2. Unresponsive Detectors and Pixel Slip 

Of the 32,768 detectors in the FPAs, 30 are known to be unresponsive. Table 3.1 

and Table 3.2 list the locations of the unresponsive pixels. If not corrected, these 

elements exaggerate the NESR and make radiometric calibration inaccurate. Various 

interpolation schemes are used to remove them from the data. For normal aerial 

operations, linear interpolation corrects the unresponsive pixel using two adjacent pixels 

in the across-track (/) dimension (Hackwell, 1997). During CARD SHARP, SEBASS 

made four scans of the target area where the instrument was moved 1 mrad in the across- 

track direction between each scan (Smith and Schwartz, 1997). The additional 

dimensionality of the data was reduced by applying a median filter which interpolated the 

data in the temporal dimension. In either case, the result is similar, and the unresponsive 

elements do not affect the data. 
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Bad Detector Spatial (l) Spectral (j) 
Element Number Location Location 

(1-128) (1-128) 
1 75 18 
2 80 23 
3 81 23 
4 44 47 
5 118 58 
6 118 59 
7 118 73 
8 119 63 
9 9 74 
10 10 74 
11 113 91 
12 48 100 
13 104 103 
14 19 106 
15 20 106 
16 125 120 

Table 3.1: Unresponsive LWIR detectors (From Smith and Schwartz, 1997). 

Bad Detector Spatial (0 Spectral (j) 
Element Number Location Location 

(1-128) (1-128) 
1 21 27 
2 22 27 
3 63 28 
4 16 42 
5 102 43 
6 102 44 
7 56 47 
8 51 65 
9 110 69 
10 49 72 
11 117 110 
12 13 111 
13 14 111 
14 14 112 

Table 3.2: Unresponsive MWIR detectors (From Smith and Schwartz, 1997). 
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IV.      DATA COLLECTION 

The change detection algorithms tested in this study were applied to two data sets. 

Images on multiple dates from the Capabilities and Requirements Demonstration for the 

SEBASS High Altitude Reconnaissance Project (CARD SHARP) were used because the 

sensor was terrestrial based during the demonstration providing stable images with 

nominally high SNR. No geometric corrections or registration were required for these 

data. The second data set consisted of images taken at multiple times during the same 

day of Camp Pendleton Marine Corps Air Station. These data were collected in flight 

and contain the artifacts associated with aerial collects. These latter data illustrate the 

shortcomings of change detection in realistic scenarios. 

A.        CARD SHARP 

In October, 1996, the Environmental Research Institute of Michigan (ERIM), in 

conjunction with The Aerospace Corporation conducted the Capabilities and 

Requirements Demonstration for the SEBASS High Altitude Reconnaissance Project 

(CARD SHARP). The primary goal of CARD SHARP was to demonstrate the utility of 

MWIR and LWIR imaging spectrometry for detecting camouflaged targets in a vegetated 

environment (Smith and Schwartz, 1997). CARD SHARP was jointly sponsored by the 

U. S. Air force Wright Laboratories, (WL/AAJS), the Central MASINT Technology 

Coordination Office (CMTCO), the U. S. Army Missile Command (MICOM), the Naval 

Research Laboratory (NRL), and the Hyperspectral MASINT Support to Military 

Operations (HYMSMO) Program. 

From 9 October 1996 through 17 October 1996, SEBASS recorded MWIR and 

LWIR measurements at the Redstone Arsenal in Huntsville, Alabama. The instrument 

was mounted on a 300 foot tower in a panoramic configuration such that each scan could 

be made by steering the sensor azimuthally using a rotating mirror. Comparing this to the 

aerial pushbroom configuration, azimuth equates to the along-track dimension (/') while 
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elevation equates to the across-track dimension (k). High counting statistics were 

attained by using relatively large numbers of samples (coadds) compared to those 

typically attainable during airborne collects. 

The CARD SHARP collection was intended to demonstrate target detection in a 

concealed, vegetation environment. Both U. S. and foreign military equipment were 

deployed in the collection area. Foreign equipment included a ZIL-131 transport, a T-72 

tank, a BTR-70 armored personnel carrier (APC), an SA-13 GOPHER surface-to-air 

missile (SAM), and an SA-4 GANEF SAM. U.S. equipment includes an M1E1 main 

battle tank (MBT), an M2 Bradley APC, an M35 2.5-ton truck, an M60A3 MBT, and an 

M60A2 MBT. 

1.        The Collection Scenario 

Three target deployments were conducted during the demonstration - each with a 

set of scenarios. Based on target availability and the type of scenarios, the target 

deployments occurring at sites SI and S2 were chosen for our purposes. SI and S2 were 

adjacent to each other and were included together in the same images. SI contained U.S. 

equipment while S2 contained foreign equipment. SEBASS collected both sites on 10 

October 1996 and 11 October 1996. During scenario 1, collected on the 10th, all targets 

were concealed using the appropriate camouflage, concealment, and deception (CC&D) 

techniques. During scenario 2, collected on the 11th, the CC&D was removed while 

leaving the equipment in place. The subtle changes that these scenarios provide make 

them well suited for testing change detection algorithms. Figure 4.1 is a photograph 

showing the positions of sites SI and S2 with respect to the SEBASS field of view. A 

color version of this figure is available in Appendix B. 
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Figure 4.1: Site layout at Redstone Arsenal (from Smith and Schwartz, 1997). 

The SEBASS field of view also contains sites S6 and S7. Activity in these areas 

includes the deployment of a Hawk surface-to-air missile, an M-35 truck, a distribution 

van, and an SA-4 surface-to-air missile. These vehicles are not directly connected to 

scenarios 1 and 2, but any activity taking place during the scenarios was still considered 

in this study. Figure 4.2 identifies the vehicle positions using a SEBASS band 64 image 

acquired on 11 October 1996 when the vehicle were uncamouflaged. Figure 4.3 and 

Figure 4.4 are photographs of the M1E1 MBT during scenario 1 (camouflaged) and 

scenario 2 (uncamouflaged). Color versions of Figure 4.2, Figure 4.3, and Figure 4.4 can 

be found in Appendix B, Table 4.1 lists the location and activity of each vehicle during 

each scenario. 
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Figure 4.2:   Vehicle positions in the CARD SHARP field of view. 

56 



"■'i *' ' 

Figure 4.3: The M1E1 Abrams MBT positioned at site SI with 
woodland camouflage. 

i iMäM. 

Figure 4.4: The Ml El Abrams MBT positioned at site SI without 
camouflage. 
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Scenario 
Time/Date Site 
Scenario 1 
2200 10-9-96 thru 1400 
10-10-96 

SI 

Vehicle Description 

M1E1 Abrams MBT 

CC&D 

LCSS woodland 

2200 10-9-96 thru 1400 SI 
10-10-96 

2200 10-9-96 thru 1400 SI 
10-10-96 

M60A3 MBT 

M2 Bradley APC 

LCSS woodland 

LCSS woodland 

2200 10-9-96 thru 1400 S2 
10-10-96 

2200 10-9-96 thru 1400 S2 
10-10-96 

T-72 MBT 

BTR-70 APC 

British with thermal 
blankets 

West German woodland 

2200 10-9-96 thru 1400 S2 
10-10-96 

Scenario 2 
1400 10-10-96 thru SI 
1100 10-11-96 

ZIL-131 

M1E1 Abrams MBT 

East German woodland 

none 

1400 10-10-96 thru 
1100 10-11-96 

1400 10-10-96 thru 
1100 10-11-96 

1400 10-10-96 thru 
1500 10-13-96 

SI 

SI 

S2 

M60A3 MBT 

M2 Bradley APC 

T-72 MBT 

none 

none 

none 

1400 10-10-96 thru 
1500 10-13-96 

S2 BTR-70 APC none 

1400 10-10-96 thru 
1500 10-13-96 

S2 ZIL-131 none 

Table 4.1: Location and description of equipment for scenarios 1 
and 2 (after Smith and Schwartz, 1997). 
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2.        Data 

Scans for both days began and ended at the same azimuth to eliminate the need 

for registration. Each scan consisted of 1000 lines (57.3° azimuthal FOV). In order to 

exclude unresponsive sensor elements from the data set, four scans were acquired for 

each measurement. Each scan was offset in elevation by the instrument's IFOV (1 mrad). 

During preprocessing, the four scans were combined using a median filter. The final 

LWIR hypercubes consisted of 128 bands by 131 pixels (elevation) by 1000 pixels 

(azimuth). 

While both MWIR and LWIR channels were available, only the LWIR 

hypercubes were used in this study. To minimize noise, 20 frames were coadded for each 

scan. Merging the four scans using the median filter technique further minimized noise 

creating the effect of coadding 80 frames. The instrument scan rate was 12 Hz and took 

83.3 seconds to complete each scan. Preprocessing consisted of calibrating the data to at- 

sensor radiance in accordance with Chapter 3 of this thesis. Calibration source data files 

were not available for accurate atmospheric correction using the plastic ruler method. 

Because the data were collected on a stable platform, they do not contain the 

typical problems associated with aerial collection (i.e. roll error, vibration, noise, coadd 

constraints). Furthermore, the demonstration was well executed with numerous target 

types all concealed in a challenging, vegetated scene. This provided an ideal setting for 

testing change detection techniques. 

B.        MCAS CAMP PENDLETON 

On 10 December 1997, data from Camp Pendleton MCAS was collected to 

provide a realistic data set for change detection. This site was well suited because recent 

ground truth information was available from EXERCISE KERNEL BLITZ conducted at 

Camp Pendleton from 10 June 1997 to 7 June 1997. It also provides a busy, military- 

urban scene with which to test a variety of techniques.  Much of the activity entails the 
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movement of large equipment, such as helicopters, which also may allow the use of 

change detection to discriminate different types of thermal scarring. 

1. Collection Parameters 

On 10 December 1997, troops at Camp Pendleton MCAS were conducting 

training exercises. The SEBASS flight crew were permitted to collect on the LCAC 

facility, air field, and train depot before (1000) and after (1400) the training exercises. 

No coordination took place between the flight crew and marine units. The expectation 

was that the activity between the two collects would be sufficient to provide a change- 

rich scene. 

All flight operations were restricted to 3000 feet. This provided a nominal GSD 

of 3 feet (0.9 meters) and an swath width of 384 feet (117 meters). Multiple passes were 

made on each target area to ensure the full area was collected. Figure 4.5 shows how the 

passes were flown. A color version of this figure is located in Appendix B. 

>.2Lat26 

Figure 4.5: A composite image consisting of Landsat TM (bands 1,2, and 3), a color 
aerial photograph mosaic, and the two SEBASS images used for this study. 
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2. Target Description 

The airfield at Camp Pendleton MCAS consists of a cement parking apron and an 

asphalt runway. Most of the aircraft on the parking apron are H-53 helicopters. Since 

little activity was expected on the runway, it was not imaged for this study. Images of the 

parking apron were acquired before and after a major flight operation; therefore, it was 

presupposed that aircraft would not be returned to their exact previous positions. 

The supply depot consists mostly of large warehouse-like buildings, parking lots, 

and staging areas. The building use a variety of roofing materials including tin and tar. 

The parking lots and staging areas consist of cement and asphalt. Since these images 

were acquired during a week day, automobiles occupy a large majority of the parking 

lots. Vandergrift Boulevard separates the supply depot from the airfield and consists of 

asphalt. 

3. Considerations 

Winds were high during the collection periods making the aircraft difficult to 

control. The roll compensator was unable to correct for the high degree of roll error. 

This is manifested in the data as skewing (or squiggle). Because the squiggle was such a 

high frequency, it was imperative to remove the squiggle before the data could be 

registered. The data were "de-squiggled" by cross correlating each scan line with one 

adjacent to it and determining the line offset from the maximum correlation. A 

polynomial function was derived from the correlation data and applied to the squiggle 

pattern. Figure 4.6 illustrates the technique graphically, and Figure 4.7 demonstrates the 

technique on real data. 

Once the error correction was removed, each hypercube was registered to a 

rectilinear aerial photograph of Camp Pendleton using the triangulation-based registration 

procedure available in ENVI.   In order to compensate for roundoff error in the roll 
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correction and to minimize the effects caused by along-track stretching and compression 

due to sampling rate errors, close attention was paid to proper registration. Each image 

a. Original Data 

b. Cross Correlation 
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Figure 4.6: The cross-correlation technique for removing error correction, (a) The 
uncorrected image, (b) The technique by finding the offset with the highest correlation. 

(c) The corrected (straightened) image. 
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Figure 4.7: A subset of the Camp Pendleton supply depot where 
roll correction and registration has been applied. 
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required at least 50 ground control points to ensure accurate registration.    Nearest 

neighbor interpolation was used to maintain radiometric integrity. 

A high degree of roll error was introduced into the airfield scenes. This, coupled 

with a lack of geographic features that could be used for ground control points, prevented 

adequate registration. Aircraft parking locations were not sufficiently aligned to enable 

change detection. Therefore, it was necessary to remove the airfield data from 

consideration in this study. 

The Camp Pendleton data could also be used in the analysis of thermal scarring. 

Thermal scarring is defined as any change in the appearance of an object which is 

associated with the proximity of another object. Thermal scarring is usually associated 

with thermal changes in cement parking areas such as airfields and parking lots. For 

instance, an aircraft may leave a thermal scar when is has been parked in one place 

through most of the night. When the aircraft leaves its position, the cement beneath it 

will be warmer than the surrounding cement leaving a thermal scar that resembles the 

shape of the aircraft. Thermal scarring is used by imagery analysts to determine the 

recent departure of vehicles from a given position. 

It is not always clear, however, that thermal scarring is caused by temperature 

differences. Vehicles tend to leak hydraulic fluid which can change the emissivity of the 

surface below. This can also appear brighter or darker than the surrounding area. This 

type of scarring is created over time, but it can be interpreted incorrectly as a thermal scar 

associated with aircraft or vehicle operations. For this reason, it is important to 

differentiate a true thermal scar (indicating vehicle movement) from other types of 

scarring. The airfield data provides a number of thermal scarring examples; however, 

since the data are not conducive to change detection, further study is recommended at a 

later time. 
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C.        CONSIDERATIONS FOR SPECTRAL CHANGE DETECTION 

The quality of spectral data can vary widely, and it is important to avoid 

restriction of this study to only one data set. As mentioned previously, a number of 

undesirable characteristics accompany the analysis of aerial data. These characteristics 

can preclude accurate analysis; however, they highlight the problems associated with 

aerial data and warrant study concurrent with a study under more controlled conditions. 

Although the CARD SHARP data do not contain artifacts associated with attitude 

errors, they do contain instrument-related errors which require a closer look. These data 

allow the scope of the analysis to narrow to the evaluation of techniques without 

considering how certain artifacts might affect those techniques. It also allows the 

analysis to consider other problems with change detection that might be associated with 

thermal spectral imagery in general that otherwise might be masked by platform-specific 

issues. 

One example is the noticeable variability in the data between dates. It is expected 

that changes in air temperature, humidity, and other weather conditions will affect overall 

scene brightness as well as affect some local areas in different ways; however, local 

variations in these data appear to be unnatural. Figure 4.8 shows band 64 on 10 October. 

A brightness gradient is present such that the left side of the image is brighter than the 

right side. PC band 5 of the 10 October data isolates some of the gradient. 
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10 October 96, PC Band 5 

Figure 4.8: These images show that an along-track gradient exists 
where the left side of the image is brighter than the right side. 
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Gain inconsistencies are also present in the across-track direction. Figure 4.9 

shows the first 200 lines of three principal components (PC bands 1, 7, and 15) for both 

dates and the result of differencing those PC bands (11 October minus 10 October). For 

both dates, band 1 contains overall brightness information and is provided for orientation. 

PC bands 7 and 15 contain distinct periodic noise that cannot be attributed to natural 

causes. It would appear that the gain fluctuates along the spatial dimension of the LWIR 

FPA. The differenced images demonstrate that this fluctuation is not consistent between 

dates because the periodic pattern is not minimized or eliminated. These gain 

inconsistencies add to the noise making it difficult to identify small spectral changes. 
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Figure 4.9: A comparison of PC bands 1,7, and 15 for both dates 
and the difference between the two dates. 

Since much of the signal in thermal spectral data is caused by thermal emission, 

converting the data to emissivity removes much of the information content and has the 

effect of exaggerating the noise. To demonstrate this the data were converted to 

emissivity using the plastic ruler method and atmospheric data from MODTRAN. Figure 

4.10 depicts this result. When the data are converted to emissivity, a brightness gradient 

is easily observed in scenario 1 that is not introduced from the natural local environment. 
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Scenario 2 contains no gradient. In both images, the across-track periodic pattern is 

present. This phenomenon appears to be specific to SEBASS, but may not be a recurring 

artifact in the instrument. Its impact on the ability to conduct change detection is 

profound. Such brightness gradients can hide subtle changes within noise and increases 

the potential for false alarms. For this reason, using data converted to apparent emissivity 

proved unreliable. Since the noise was not as evident in the unconverted data, the at- 

sensor radiance data was used in this study. This example suggests that tighter sensor 

gain control is required to improve change detection capability. 

<r*m. !i '.',1 
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10 OCTOBER 98 11 OCTOBER 98 

Figure 4.10: A comparison of CARD SHARP images converted to 
emissivity. 

To further investigate the difference in emissivity data, Figure 4.11 plots the 

histograms from emissivity band 64 of both dates. It is easy to see that the drastic 

difference in the two histograms would make it impossible to use for change detection. 

Based on Figure 4.10 above, it appears that the 11 October data more closely resembles 

apparent emissivity data. Another conclusion can then be drawn from its histogram. The 

majority of the material in the image has an emissivity greater than 0.995 which suggest 

that most objects in the image are nearly blackbody emitters. Therefore, spectral change 

in heavy vegetation will occur within 0.5 percent of the total signal. This further suggests 

that a very high SNR is required to accurately conduct change detection. 

These problems appear to be unique to the CARD SHARP collect and are not 

evident in other data as SEBASS development continues.  Further improvements to the 
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thermal spectral program will increase the sensitivity and utility of such an instrument for 

change detection. 
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Figure 4.11: Histograms of band 64 from both dates converted to 
emissivity 
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V.       DATA ANALYSIS 

Before the value of various change detection techniques can be studied it is 

necessary to characterize spectral change and consider the value of spectral change 

detection in general. The analysis here does not attempt to categorize current methods, 

but rather performs an in-depth examination of spectral change in these data using simple 

analysis techniques. The desired result is to detect spectral change, to evaluate these 

analysis methods, and to classify sources of error that reduce the effectiveness of spectral 

thermal change detection. 

A.       METHODS FOR HYPERSPECTRAL CHANGE DETECTION 

Not all of the methods illustrated in Chapter 2 are useful for this work. 

Classification techniques were eliminated from this study because of their complexity. 

Generally, post classification comparison and direct multidate classification work well 

when a scene provides a relatively small number of large areas such as vegetation, water, 

and urban. When trying to identify a very small number of pixels that represent a change 

class, the task becomes difficult. It is further complicated when the changes of interest 

are a subset of a larger class such as vegetation as is the case with the CARD SHARP 

data. To attempt a proper study of classification techniques would require many 

iterations and extensive analyst intervention. This defeats the purpose of seeking 

techniques that would reduce such intervention and the amount of time required to 

analyze a scene. It is possible that further study will reveal that classification techniques 

are useful and accurate, but they have been considered outside the scope of this 

introductory study of change analysis for thermal hyperspectral imagery. 

The emphasis of this study is on simple techniques and determining the feasibility 

of detecting spectral change. With that in mind, the analysis of the CARD SHARP data 

is strictly an analysis of spectral change in thermal imagery in the context of a heavily 

vegetated environment. Change vector techniques such as differencing and spectral angle 
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will be the primary means for identifying change. A similar analysis is provided for the 

Camp Pendleton data; however, a different set of challenges exists with these data thus 

further testing the techniques in a more realistic environment. 

B.        CHANGE DETECTION: CARD SHARP 

1.        Image Differencing and the Target-to-Backgroimd Separation (TBS) 

A goal of this work is to utilize the spectral character of the data to detect changes 

that are often not detected in broadband imagery. The intent is to find subtle changes in a 

scene that equate to spectral features where, in broadband imagery, these features are 

averaged and removed. 

To begin, we must first look at change detection in simulated broadband imagery. 

Two CARD SHARP hypercubes were converted to pseudo forward looking infrared 

(FLIR) images by averaging all bands equally. The result is a single broadband image for 

each date. The images were differenced to determine if the change in the vehicles could 

be discerned without the spectral information. Figure 5.1 is the resulting change image 

scaled to enhance the identification of the changed targets. The 1000 line image has been 

divided into two segments beginning at the top left and ending at the bottom right. The 

image is expressed in difference in radiance measured in ^flicks. The image gray scale is 

set such that white represents a small change and black represents a large change. Note 

that most of the vehicles are discernable without the need for the spectral dimension.- 

This suggests that the largest amount of change associated with the targets is caused by 

the thermal difference of using camouflage and not using camouflage. 
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Figure 5.1:   A change image created by first averaging all bands of 
each hypercube and then differencing the two resulting images. 

To further illustrate the concept of change, it is appropriate to discuss the 

difference distribution as done in Chapter 2. Recall that areas of no change will remain 

close to the mean of the distribution while areas of change will appear in the tails. Figure 

5.2 is a comparison of the histogram of the entire change image and the histogram of the 

pixels that contain target information (indicated in black). The vertical and horizontal 

lines represent the mean (-39.32) and standard deviation (13.96) respectively of the entire 

scene. The subset of target pixels will include a small number of background pixels 

adjacent to the targets and small number of mixed target/background pixels. The mean of 

the target pixels is 1.96 standard deviations to the right of the mean of the entire change 

image. This measure will be referred to as the target-to-background separation (TBS). 

Also note that a large portion of the target pixels fall completely outside the distribution 

of the non-target pixels. These pixels are highly discernable and do not resemble 

background. Target pixels that fall inside the overall distribution compete with 

background and may be less discernable. 
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The image in Figure 5.1 is scaled over the distribution of target pixels such that 

any target pixels outside the overall distribution appear black and all other pixels with 

values from -10.0 to -35.0 are scaled from black to white. This illustrates the mixing in 

the distribution of background and target pixels. All pixels that appear as non-white are 

in the same distribution as the leftmost target pixels depicted in the histogram. 
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Figure 5.2:   A histogram of the CARD SHARP change image in 
Figure 5.1 produced from the pseudo FLIR images. 

Such a result in a broadband image seems to negate the need for spectral change 

detection. In fact, the CARD SHARP data set appears to be void of significant spectral 

change that is independent of thermal change. Figure 5.3 illustrates 18 bands of the first 

200 lines of the change vector image. Note that the three vehicles in the image are visible 

in every band which indicates that removing the camouflage corresponded to an overall 
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increase in target radiance. This suggests that it might be an inappropriate data set for an 

in-depth study of spectral change techniques. This unexpected result for the heavily 

vegetated Huntsville scene requires a more careful consideration. 
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Figure 5.3: The first 200 lines of the CARD SHARP change 
vector - eighteen bands spaced seven bands apart. 
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Figure 5.4 is a plot of the ground truth spectra of the M-60 tank with and without 

camouflage. A color version of this figure is available in Appendix B. This plot also 

includes the difference of the two spectra. A significant spectral feature is visible at 9.50 

urn where there is a relative decrease in radiance of the camouflaged tank. This equates 

to band 31 in the SEBASS dates. 
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Figure 5.4: Ground truth spectra acquired during CARD SHARP 
for the M-60A MBT. 

Ground truth spectra were not available for all of the vehicles in the scene, so a 

variety of pixels were sampled from the image and their spectra are presented in Figure 

5.5. There are two major features that stand out in these spectra. There is a feature 

located at 9.16 urn (band 27) and one located at 12.52 um (band 98). The feature at 

12.52 urn is an atmospheric absorption band and is not actually a true target spectral 

feature.    Figure 5.6 depicts the MODTRAN output for Huntsville, Alabama during 
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October.  An absorption band is present at 12.52 urn, and the change here is associated 

with the fluctuation of the humid Huntsville atmosphere. 

The feature at 9.16 um appears to be the compliment to the feature previously 

identified in the camouflaged M-60 spectrum. Close comparison of Figure 5.4 with 

Figure 5.5 shows that both the 9.45 um and 9.16 urn features are present in the ground 

truth and SEBASS data. A more revealing plot of this relationship is presented in Figure 

5.7. This feature is present in the image in all three camouflaged U.S. vehicles but not 

present in the foreign vehicles or vegetation. This appears to be the only truly discernable 

spectral feature available in the CARD SHARP scene. Color versions of Figure 5.5 and 

Figure 5.7 are available in Appendix B. 

CARD SHARP Difference Spectra 
(11 October minus 10 October) 

20 

10 

0) 
u 
e 
.5 
n 

c 
■10 - 

0) 8 -20 
C 
0) 

1-30 

-40 

-50 

W4>    -^W**uvt***»fc 

jim 

Atmospheric 
Absorption 

-*- M1E 

-*-M60A 

— M2 

— T-72 

— SA-4 

-•— Tree(center) 

•— Tree(left) 

10 11 

Wavelength (um) 

12 13 14 

Figure 5.5: A variety of difference spectra produced by subtracting the 
spectrum at a given pixel location in the 10 October image from the spectrum 

at the same pixel location in the 11 October image. 
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MODTRAN Output: Huntsville, AL 
Thermal Path Radiance 

10 11 

Wavelength (um) 

Total Radiance 

10 11 

Wavelength (urn) 
14 

Total Transmtttance 

10 11 

Wavelength (urn) 

Figure 5.6:   MODTRAN output for Huntville, Alabama during 
October. 
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M-60 Ground Truth and Real Data 
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Figure 5.7: A comparison of SEBASS and ground truth difference 
data for the M-60A MBT with and without camouflage. 

These differenced spectra suggest the data should be compared at these spectral 

wavelengths. The uncamouflaged vehicles in the image from 11 October should be 

brighter than the camouflaged vehicles in the 10 October image. In a change image, 

where 10 October is subtracted from 11 October, this would appear as a brighter value 

than pixels that do not exhibit the same spectral change. While this feature is 

distinguishable in the spectra, it does not produce a noticeable difference in the images. 

Figure 5.8 compares 200 lines containing the three U.S. vehicles for Band 27 (9.16 um), 

band 33 (9.50 um), and band 98 (12.52 um). 
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Figure 5.8:   A comparison of three significant bands. 

This qualitative result can be quantified by further study of the data distribution. 

Figure 5.9 through Figure 5.16 are the histograms and change images for bands 27, 33, 

86, and 98 respectively. The most significant indication that there is a difference in the 

vehicles from the two bands is that, in band 33, the target-to-background separation 

(TBS) is 1.99 standard deviations, and in band 86, it is 1.90 standard deviations. This is 

not an appreciable difference considering that the TBS for the simulated FLIR image was 

1.97, but it does demonstrated that relatively small spectral changes are detectable using 

TBS. Note that band 98 has a TBS of 2.17. This is the highest of all four selected bands 

but is associated with an atmospheric absorption feature instead of a spectral feature. The 

vehicles are plainly visible in all images which further illustrates the dominance of the 

thermal change over the small spectral change. 
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Figure 5.9: Histogram for CARD SHARP difference band 27 (9.16 urn). 
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Figure 5.10: Change image for CARD SHARP difference band 27 (9.16 urn). 
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Figure 5.11:   Histogram for CARD SHARP difference band 33 (9.50 um). 
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Figure 5.12:   Change image for CARD SHARP difference band 33 (9.50 urn). 
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Figure 5.13:   Histogram for CARD SHARP difference band 86 (12.02um). 
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Figure 5.14:   Change image for CARD SHARP difference band 86 (12.02 jam). 
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Figure 5.15:   Histogram for CARD SHARP difference band 98 (12.52 jun). 
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Figure 5.16:   Change image for CARD SHARP difference band 98 (12.52 urn). 
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The TBS proves to be an adequate measure of spectral change. To better 

understand the relationship of all bands in the change image, Figure 5.17 plots TBS 

against wavelength. A useful band with a highly discernable spectral feature would have 

a TBS much higher than the random fluctuations in the other bands. Note that 9.16 and 

9.50 um maintain their distinct feature but do not appreciably improve change detection. 

Band 98 (12.52 (am), the atmospheric absorption band, has a much greater TBS than the 

majority of the data. This may be caused by contrast-enhancing effects created by the 

water absorption and the moisture present in vegetation but absent in the camouflage. 

Other absorption bands, at 9.77 and 13.50 urn appear to produce a similar effect. 

Target-to-Background Separation 
CARD SHARP 

Figure 5.17: Target-to-background separation for the CARD SHARP change image. 

This plot indicates that there is no sufficient proof that spectral change 

information is present and detectable in the CARD SHARP data. Simple techniques, 

such as differencing, are useful in identifying thermal change in these data but provide 

little utility in detecting spectral change.   It is possible, however, that the most useful 
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bands  in  detecting  CC&D  changes  in  a heavily vegetated  environment  are  the 

atmospheric absorption bands. 

Further indication of the absence of spectral information in the CARD SHARP 

data can be found by plotting the histograms simultaneously on a scatter plot. Figure 

5.18 depicts such a plot for bands 27 and 33 (chosen to include the 9.16 and 9.50 um 

feature). A color version of this figure is available in Appendix B. The strong linear 

relationship of the data represent the radiometric similarity of the two bands. In other 

words, bright pixels in band 27 are also bright in band 33. Points plotted off axis from 

this linear relationship behave differently in the two bands and may represent a spectral 

change. The highlighted points in Figure 5.18 represent the target pixels. A color version 

of this figure is available in Appendix B. Although, the points are clustered together, 

they do not depart from the linear relationship. This indicates that they are 

radiometrically different from the background but not spectrally different. 
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Figure 5.18:   A scatter plot for CARD SHARP difference band 27 (9.16 urn) and 
band 33 (9.50 urn). 
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2.        Spectral Angle 

The spectral angle of the change vector was also studied. The spectral angle result 

was created from the dot product of the two images as described in Chapter 2. Figure 

5.19 presents the histogram of this change result. This figure plainly demonstrates the 

spectral blandness of the data. The target pixels fall in the heaviest part of the 

distribution. The TBS of 0.27 means very little because areas of change will have a 

higher spectral angle regardless of their position with respect to the background mean. 

Two major change distributions are present in this result. The forest makes up the 

distribution to the left of the mean while the grass makes up the distribution to the right. 

Therefore the grass appears to have changed the most. This is likely caused by a 

difference in moisture on the two days. (It had rained in the interval.) The majority of 

the target pixels fall within the change distribution for the forest which would make them 

difficult to discern. Without examining the change image, one can see that it would be 

difficult to discern these targets. 
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Figure 5.19:  Histogram for the CARD SHARP spectral angle result. 

Figure 5.20 is the change image for the dot product. The image has been 

converted to spectral angle in degrees and displayed such that the darkest pixels have the 

highest spectral angle. The three U.S. vehicles and the T-72 are barely visible in the 

image. They are visible only because they are darker than their local background. This 

suggests that there is some difference between the vehicles and the surrounding 

vegetation; however the change is minimal and many of the target pixels have spectral 

angles between 0.35 and 0.50 which causes them to blend with the surrounding 

vegetation. For this result, spectral angle appears to provide marginal utility to the 

change analysis. This is likely due to the lack of spectral change. Since the only 

discernable spectral feature was available in the U.S. camouflage, it would make sense 

that the only changes truly discernable in this result come from the U.S. vehicles. 
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Figure 5.20:   Change image for the CARD SHARP spectral angle result. 

C.        CHANGE DETECTION: CAMP PENDLETON 

1. Image Differencing 

Similar change vector techniques were applied to the Camp Pendleton data. 

Change images were obtained by subtracting Run 1 (obtained at 1000 on 10 December) 

from Run 2 (obtained at 1400 on the same date). Figure 5.21 depicts the result for band 

51 (10.28 um). A color version of this figure can be found in Appendix B. The 

difference image is busy and difficult to interpret. Numerous misregistration errors make 

it difficult to identify genuine changes. By comparing all three images side-by-side, two 

changes appear to stand out. One appears to be the existence of a cool object in run 1 that 

is not present in run 2 located to the right of the third warehouse (Change A). The second 

is the existence of a warm object in run 2 that is not present in run 1 located to the right of 

the second warehouse (Change B). Both changes appear as positive (bright) pixels in the 

change image; however, they are still difficult to distinguish from the busy background. 
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Figure 5.21:   Image differencing result for band 51 (10.28 um) of the Camp Pendleton 
data. Two genuine changes are indicated at A and B. 

Figure 5.22 examines the spectra of three pixels across change A in the vertical 

direction. A color version of this figure is available in Appendix B. While the change is 

discernable in the image, it appears to be caused by an increase in temperature at that 

location. Note that the temperature of the second pixel is higher for run 2, but the 

temperature of the two adjacent pixels is lower for run 2. The spectra at all three pixels is 

similar for run 1 and run 2 which suggests that new material has not been introduced at 

this location. 
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Figure 5.22:   A sample of three spectra across change A in Figure 5.21. 

Figure 5.23 is the histogram of difference band 51. The black histogram 

represents the pixels from the second change mentioned previously. The TBS for this 

change is less than one standard deviation and competes with a large portion of the 

background (presumably due to registration errors). In this case, it would seem that a 

one-dimensional histogram is insufficient for describing the change and that TBS may 

not be a useful measure in this context. 
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Figure 5.23:   The histogram for difference band 51 of the Camp 
Pendleton change vecotor. 

If this change identifies the introduction of an object into the scene, its spectral 

signature would likely be different from scene-to-scene and with respect to the 

surrounding material. Figure 5.24 illustrates five adjacent pixels across the horizontal 

dimension. A color version of this figure is available in Appendix B. The first two pixels 

appear to be both spectrally and radiometrically similar from run 1 to run 2, and the last 

pixel appears to be spectrally similar but radiometrically dissimilar. The third and fourth 

pixels are identified as change pixels Figure 5.21. In both pixels, there is a broad spectral 

feature at band 28 (9.06 urn) present in run 2 that is not present in run 1. It is interesting 

to note that this appears to be a similar spectral feature to that of the U.S. camouflage in 

the CARD SHARP data. It is likely that this is the same type of material (perhaps a 

synthetic fabric). A lack of ground truth for these data preclude confirmation. 
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Figure 5.24:   A sample of five spectra across change B in Figure 5.21. 
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Since a spectral feature is definitely present at band 28, it now makes sense to 

compare bands 28 and 51 in a two-dimensional scatter plot. Figure 5.25 shows a strong 

linear relationship in the two difference bands, but two small groupings of pixels fall 

below the background. The leftmost cluster represents "spectral changes" caused by 

gross misregistration. The rightmost cluster represents the change of interest. This 

suggests that there is spectral change present at this location. A color version of Figure 

5.25 is available in Appendix B. 
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Figure 5.25:   The two-dimensional scatter plot comparing difference bands 28 and 51. 

The spectral change is not readily discemable in the standard difference bands, but 

it is discemable when comparing two bands that enhance the spectral feature. Figure 5.25 

explains why a one-dimensional histogram is inadequate in this case. The change is 

located at the center of the distribution when looking at the data from either band. 
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However, the change is very discernable when both bands are included in the analysis and 

the axes are rotated 45°. Therefore a more useful change image could be obtained by 

transforming these two difference bands into principal components. Figure 5.26 displays 

PC band 2 from a principal component transform of difference bands 28 and 51. The 

change is more readily identified in this change result. Figure 5.27 is the histogram for 

PC band 2. Rotating the axes improves the TBS by 730% (from 0.70 to 5.12). The 

change competes only with the registration errors. An improved registration process 

would further improve the change detection process. Figure 5.28 is a scatter plot of the 

principal component transform. A color version of this figure can be found in Appendix 

B. The changes are now above the background distribution which allows them to be 

distinguishable in PC band 2. 
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Figure 5.26:   The change result for the Camp Pendleton data using 
the second principal component of the difference bands 28 and 51. 

93 



Camp Pendleton  Supply Depot 
10000 T ■'■■■' 

1000- 

PC  Band  2 

CO 
<p o c 
CD 

3 
O 
U 

O 

100^ 

-40       -20 0 20 40 
Principal Compenent Value 

Figure 5.27:   The histogram for the PCA result of the Camp Pendleton data. 
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Figure 5.28:   The principal component rotation of the scatter plot in Figure 5.25 The 
change class are now at the top of the plot. 
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2. Spectral Angle 

A spectral angle result of the Camp Pendleton supply depot was obtained using 

the dot product method previously discussed. These results are displayed in Figure 5.29 

and Figure 5.30. Color versions of these figures can be found in Appendix B. The left 

image in both figures is the spectral angle result while the right image is a comparison of 

run 1 and run 2 of band 54. The spectral angle image uses a hue, saturation, and value 

(HSV) color space to add a contextual dimension to the result. The spectral angle is 

described in hue (color) with violet being the lowest angle and red being the highest. 

Radiance for band 51 is described in value (brightness) while saturation remained at a 

constant maximum value throughout the result. Therefore, any red pixel in the image is 

associated with a high change in spectral angle regardless of its brightness. The band 

comparison uses complimentary colors (blue and yellow) to describe their relationship. 

For example, a pixel with a high value in run 2 but a low value in run 1 will have a blue 

tint while a pixel with a high value in run 1 but a low value in run 2 will have a yellow 

tint. Pixels that appear neutral will have the same value in both runs. 

Again this result demonstrates the difficulty in distinguishing genuine change 

from registration errors; however both changes previously discussed can be identified in 

Figure 5.29 (available in color in Appendix B). Change A, caused solely by thermal 

differences, can be seen as a difference in radiance (brightness value) but has a low 

spectral angle (hue). This supports the previous assertion that spectral change did not 

take place at this location. Change B, which was associated with a spectral difference, 

has a higher spectral angle indicated by its yellow hue. For the Camp Pendleton data, the 

spectral angle technique is sufficiently sensitive to detect spectral change which 

demonstrates that familiar techniques can be applied to spectral thermal data. 
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Figure 5.29:   Spectral angle result for the Camp Pendleton data. 
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Figure 5.30:   A tighter view of Figure 5.29. 
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3. Registration Errors and False Detections 

To maintain radiometric integrity of the data, both roll correction and registration 

used nearest neighbor operations. This has the effect of "moving" a pixel to a new 

position, but since a pixel cannot be moved a fraction of a step, roundoff errors were 

introduced. This is best illustrated using the dot product result of the supply depot. At 

first glance, it would appear that there are several changes (depicted as red in Appendix B 

in Figure 5.29), but it quickly becomes obvious that detection along sharp edges (such as 

building rooftops) are caused by registration error. It is easy to identify and ignore false 

detections caused by edges which leaves a small number of detections remaining. It 

would seem probable that these are true detections, but as demonstrated earlier, genuine 

spectral changes are occurring at smaller spectral angles while pixels with larger spectral 

angles appear still to be associated with registration errors. 

Figure 5.31 can be used to further examine such a detection. A color version of 

this figure can be found in Appendix B. The maximum detected change occurs near a 

building and may be a large vehicle parked next to the building. To examine the result 

more closely, Figure 5.31 presents the spectra from three pixels. It is obvious from the 

plots that the spectra from the first pixel are nearly identical. The same is true for the 

spectra from the third pixel. The second pixel, the maximum change, contains two 

dissimilar spectra which would suggest the presence of spectral change; however, there is 

a high degree of similarity between the spectrum in run 1 of pixel 2 and run 1 of pixel 3. 

Likewise, spectral similarity exists between run 2 of pixel 1 and run 2 of pixel 2. This 

suggests that registration errors and not spectral change are the probable cause of this 

detection. 

This demonstrates that the largest spectral angles are mostly associated with false 

detections since registration errors can have a dramatic effect on pixel dissimilarity. Dai 

and Khorram (1997) quantify the effects of misregistration on change detection. With 

respect to Landsat TM data, they determine that, in order to limit the change detection 

error to less than 10%, it is necessary to register images to within one fifth of a pixel (a 
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registration accuracy of 0.1934 pixel). Changes of interest must then occur at lower 

spectral angles. Figure 5.32 illustrates such an example. Note that the roof of the 

warehouse is depicted as green. This equates to a spectral angle of approximately three 

degrees. The surrounding pavement is depicted as cyan which equates to a spectral angle 

of approximately two degrees. In this case, the higher spectral angle is cause by a 

decrease in rooftop temperature while the pavement temperature remains relatively 

constant. A color version of Figure 5.32 is included in Appendix B. 

Registration errors caused primarily by the aerial platform from which the data 

were collected confound the change analysis and make it difficult to interpret. It is likely 

that change detection will be more useful in analyzing data from a space-based platform 

once one is available. 
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Figure 5.31:   A sample of spectra from pixels that exhibit high 
change in the spectral angle result. 
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Figure 5.32:   A sample of pixels representing varying degrees of change 
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VI.      RESULTS 

A. SEBASS INSTRUMENT AND DATA 

SEBASS has demonstrated some utility in the LWIR for atemporal anomaly 

detection (Collins, 1996 and Smith and Schwartz, 1997). Collins (1996) was able to 

discriminate camouflaged military vehicles in a desert environment using techniques 

normally applied in the reflective portion of the spectrum. Smith and Schwartz (1997) 

applied similar techniques to an initial analysis of CARD SHARP data and successfully 

detected uncamouflaged vehicles. Figure 4.2 not only depicts vehicle locations but 

demonstrates that a single stretched band is sufficient in providing the same result, and 

that the discriminating factor is thermal rather than spectral. Later work by Schwartz, et 

al (1997) concluded that anomaly detection in this environment can be done successfully. 

The utility of LWIR spectral imagery for support to military operations (SMO) may be 

somewhat limited since pronounced spectral features are not as prevalent in the emissive 

regions than in the reflected regions. This does not negate the need for a thermal spectral 

system which enables night exploitation. 

The CARD SHARP collect highlighted instrument inconsistencies which made 

spectral change detection difficult. Small variations in gain across the LWIR FPA made 

it impossible to use hypercubes converted to apparent emissivity for spectral change 

detection. Without such a data set, spectral changes could not easily be isolated from 

thermal changes. Since thermal changes tend to overpower spectral changes, analysis of 

the combined data was prohibitive. SEBASS is undergoing continuous improvement in 

these areas which should make apparent emissivity more reliable in the future. 

B. EVALUATION OF SPECTRAL CHANGE TECHNIQUES 

Consideration of advanced spectral change detection methods was eliminated 

from the study based on the low quality of both sets of data.   Instead, an in-depth 
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characterization of thermal spectral change was more relevant. The techniques used in 

this study required a high degree of a priori knowledge to sufficiently explore the 

feasability of thermal spectral change detection. In order to properly employ these 

techniques, information about target position must be available. This is not an 

unreasonable assumption as anomaly detection can provide that information and could 

lead to the development of a target history for a given area. Essentially, change detection 

is the detection of new anomalies not present in the target history. 

The target-to-background separation (TBS) proved to be a useful measure of 

spectral change as long as the targets could be identified prior to analysis. By tracking 

the TBS at every wavelength, it became easy to identify which bands were spectrally 

significant for a given change. This could aid in selecting the appropriate bands to be 

used for visual (spatial) discrimination. The spectral features observed in the CARD 

SHARP data were on the order of one percent of the total observed radiance; however, 

this was not substantially above the observed noise. Even though the NESR was 0.1 

uflicks, thermal fluctuations, registration errors, and gain inconsistencies dramatically 

reduce the SNR. 

Once spectrally significant bands were identified, 2-D scatter plots were useful in 

classifying the type of spectral change and descriminating spectral from thermal change. 

The comparison of change A (thermal) to change B (spectral) in the Camp Pendleton 

supply depot is an excellent example of this technique's sensitivity to spectral 

differences. Although the object at change B showed no appreciable change in 

temperature that could be detected in a one-dimensional histogram, it was very 

discernable using a scatter plot of two significant bands. It is also important to note, 

however, that change B occurred where there was no target history. The scatter plot 

helped to identify it as a potential target before TBS could be used as a measure of 

spectral dissimilarity. 

TBS was not inappropriate in the case of the Camp Pendleton data as long as it 

was correctly applied.    Applying TBS to individual bands provided little additional 
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information, but applying it to the most discemable principal component of several 

spectrally significant bands improved change detection by more than 700% increasing the 

SNR by more than a factor of five. Registration errors still overpower genuine changes 

and preclude practical use of these techniques until such errors can be reduced to 

manageable levels. 

The spectral angle technique was effective in isolating spectral changes. The 

spectral angle comparison of change A and change B in the Camp Pendleton data proved 

that subtle spectral change could be discerned from thermal change. The thermal 

difference in the two runs at change A of the Camp Pendleton supply depot scene 

increased radiance by 10% while the spectral difference at change B increased radiance 

by only 5%, yet the difference in spectral angle between the two changes was 

approximately 2° - a difference of 40% in favor of the spectral change. This suggests that 

spectral angle will be a useful tool for change analysis. 

C.        THE UTILITY OF THERMAL DATA FOR CHANGE DETECTION 

Because an object's temperature can confound spectral analysis, using thermal 

hyperspectral data for change detection may not be the preferred method for most 

applications. However, the findings in this study prove that thermal spectral change 

detection is possible. 

Monitoring most military operations with thermal hyperspectral imagery comes 

with limitation. Pertaining to CC&D, there are few spectral features available for 

exploitation in the LWIR region. Most healthy vegetation acts as a blackbody from 8 to 

14 jj.ni. The woodland camouflage used in CARD SHARP acted in a similar manner with 

only one minor spectral feature at 9.16 urn in the U.S. camouflage. The thermal inertia of 

the uncamouflaged tanks varied greatly from the backgound which provided the primary 

input for the change detection. The Camp Pendleton data provided a spectrally rich 

environment suggesting that thermal hyperspectral data may be more useful in an 

industrial environment.   It is unclear at this time if relfective spectral change detection 
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would provide better results; however, reflective sensors are useless at night thus 

maintaining the need for the same capability in the LWIR region. 

D.       REQUIREMENTS FOR IMPROVED CHANGE DETECTION 

This study indicates that spectral change detection could be useful, but further 

improvements must be made before an imagery analyst could employ such techniques. It 

is difficult to quantify current registration accuracy considering that future platforms will 

likely be space-based hopefully eliminating the introduction of attitude errors. The 

problem would then be similar to that already encountered with Landsat multispectral 

imagery. The 0.1934 pixel registration accuracy requirement for TM (Dia and Khorram, 

1997) may be sufficient; however, the push to conduct subpixel analysis may be more 

restrictive. 

The NESR for SEBASS is typically less than 1.0 uflick which equates to a SNR 

of greater than 800; however most thermal signatures are within one percent of the total 

signal. In order to accurately detect a one-percent signature, the signature-to-noise ratio 

must be at least 10 thus requiring a SNR on the order of 104. This was evident in the 

CARD SHARP data where it was extremely difficult to identify small spectral variations 

in a heavily vegetated area. Larger spectral changes were present in the Camp Pendleton 

data. Ignoring thermal fluctuations and registration errors, a 40 uflick spectral change 

was detectable. This equates to a signature-to-noise ratio of 40. The spectral change in 

these data would have been an easily discernable signature if it were not for the high 

number of false detections. Registration errors and thermal changes overpowered the 

spectral changes reducing the SNR from 40 to 0.5 which emphasizes the importance of 

isolating emissive spectra independent of temperature and of reducing errors caused by 

misregistration. Therefore, external errors have the greatest impact on the effectiveness 

of change detection, but NESR must further be reduced in order to detect even smaller 

changes. 
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VII.    CONCLUSION 

This study indicates that detection of thermal spectral change is possible given 

that spectral features are available and the data are relatively free of thermal and 

registration-induced noise. With a great deal of effort, spectral change was isolated in 

both the CARD SHARP and Camp Pendleton data. The use of TBS, scatter plots, and 

PCA on selected difference bands were effective analysis tools in detecting and 

identifying change. However, analyses of these data were complicated by the 

confounding effects of temperature and the high number of false spectral changes 

detected due to registration errors. Producing an accurate and reliable emissive data set 

and improving the registration process will greatly affect interpretability to the point were 

imagery analysts may find hyperspectral change detection a useful tool. 

Before this can be done, many small steps must be taken to improve the quality of 

the imagery and the reliability of the techniques. All hyperspectral sensors must continue 

to improve in terms of SNR, reliability, and overall data quality. Further study is 

required to determine where the point of diminishing returns exists for various measures 

of image quality with regard to the most sensitive change detection techniques. Also, 

further study is required in the analysis of emissive spectra independent of temperature. 

For various reasons, the data in this study did not produce reliable emissivity images. 

Once image and calibration data are available to this end, a comparison of results between 

temperature dependent and independent data would be useful to determine the need for 

strictly emissive spectra. 

In the end, this study has provided useful insight into the sensitivity of simple 

change detection methods for discriminating small spectral changes. While the data, 

provided the worst case scenario, it was still possible to make an acceptable 

identification. Future research on higher quality data sets should further support this 

finding. 
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APPENDIX A. HYPERSPECTRAL ANALYSIS TECHNIQUES (STEFANOU, 
1997) 

Ü 

Technique 
A Priori 

Knowledge 
Purpose Operation 

Principal 
Components 
Analysis (PCA) 

Uses the eigenvectors of the image covariance 
Image enhancement by transforming orginal pixel      matrix to assemble a unitary transformation 

vector into a new vector with uncorrelated        matrix. When applied, this matrix creates l-band 
components ordered by variance. PC image with the most significant PC bands 

first 

Useful for descriminaton but not in identifying 
target spectra. 

c 
c    Maximum Noise 
a   Fraction (MNF) 

None 
Same as PCA but orders PC bands by image 

quality. 

Measure noise fraction as noice variance divided 
by signal variance. Noise variance is estimated 

from a uniform observed background. The 
eigenvectors of the resulting matrix are applied to 

the image to obtain the MNF transform. 

Useful for descriminaton but not in identifying 
target spectra. 

"*   "Standardized 
*5    Principal 
5    Components 

Analysis (SPCA) 

None Removes unequal SNR in aH PC bands. 

Simultaneous 
Diagonalization 

Scene 
Endmember 

Spectra 

Normalizes the variances of all PC bands to 
unity. This accounts for uneven indhridual-band The image quality of each PC band is improved 
SNR. Therefore, each band contributes equal significantly - especially in the higher bands, 

weight to the analysis. 

Performs linear filtering on the hypercube to 
Produces a single-band image which contains       obtain a |ww imagft jn ^^ me orjgjna| pjxe|      single^and image results mrf based on noise 
abundance information of a particular target      wdon hj)ve been ^„^0,^ by a fi|ter wtioT assumptions (see OSP and LSOSP). 

spectrum in every pixel. ^^ represents me desired endmember. 

Orthogonal 
jS    Subspace 
j£    Projection (OSP) 
*o    -   

Scene 
Endmember 

Spectra 

Applies a least sqaures orthogonal complement Some undesired enmembers may be 
Same as SD Fitter; however, the additive noise is     projector and tnen maxjniizes me SNR ^a a      emphasized over the target endmember. Target 

assumed to be zero. matched filter. spectrum must be in greater than 5% abundance. 

Least Squares 
OSP 

Scene Reduces the effects of noise on OSP by using a Decomposes the observations space into a 
least squares estimate of the noise thus signature and noise space and projects the       The improved SNR aids in better descriminating 

Endmember     convertjng me a priori model to an a posteriori observations into a signature space. Then OSP                      the target endmember. 
Spectra                                        model. is used to eliminate undesisred signatures. 

Filter Vector 
Algorithm (FVA) 

Scene 
Endmember 

Spectra 

Assuming linear endmember mixing, this 
algorithm attempts to demix the scene. 

Relative abundances of each endmember in a   - 
pixel is determined by taking the inner product of 
a matched filter vector (designed for endmember 

abundance) with the observed pixel vector. 

%    Low Probability of 
S    Detection (LPD) 

If a target spectrum occurs in the image with a 
Target low probability (subpixd level), undesired 
Spectra ■       signatures can be estimated directly from the 

data and eliminated. 

A linear mixing model is used where the desired 
endmember abundance is set to zero in order to 

estimate the contribution of undesired 
endmembers. The undesired signatures are 
removed using an orthogonal complement 

projector operator leaving a single-band image 
representing relative abundances of the desired 

endmember. 

The algorithm properly supresses the backgound 
in low-abundance scenes, but produces poor 

results when applied to high-abundance scenes. 

^ Sucessful target detection appears to depend on 
O     Constrained Uses beam forming to deterimine a fitter vector     the target spectrum used. CEM operators with 
*     Fn&rnv                                Taraet ,           that produces single-band image representing a             less variably produce better target 
S     Mnmzation                     SDectra ^^^ LP° COnStRlint °UwtaT9et abundance"    weighted sum of the responses at each of the          descrimination in the outputimage which 

P spectral bands within the observed pixel vector, depends only on the behavoir of the target pixel 
(CEM)                                                                                                                                                                                                                                                   vector. 

MUSlC-Based 

Endmember 
Identification 

Reference 
Spectra 

(Laboratory) 

Employs the use of known "pure" reference 
spectra to compare with mixed pixels for 

endmember identification. 

First uses a noise-whitened covariance matrix to 
determine the number of distinct spectral 

signatures. Then forms an orthogonal subspace 
to all linear combinations of spectral signatures in   Identifies pixels containing target endmembers. 

the scene using principal eigenvectors. Then 
applies a noise subspace projection operator to a 
spectral library in order to identify endmembers. 

J    Partial Unmixing 
■o 

Reference 
Spectra 

(Laboratory) 

Reduces the dimensionality of the observations 
by identifying the spectral bands on which the 
spectral reflectance is functionally dependent. 

Using MNF, the intrinsic dimensionality of the 
data is determined. The observed spectra are 
projected onto the principal axes of the most 

significant eigenvectors. 

Identifies pixels containing target endmembers. 

Spectral Angle 
Mapper (SAM) 

Reference 
Spectra 

(Laboratory) 

Determines the spectral similarity betweena 
reference spectrum and a spectra found at the 

pixel of an image. 

Calculates an angular difference, in radians, 
between an observed pixel vector and a vector 
that represents the reference spectrum. The 
smaller the angle, the closer the match to the 

reference spectrum. 

Produces a single band image where the lowest 
values in the image represent the closest 

matches to the target spectrum. 
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APPENDIXB. COLOR FIGURES 

Figure 2.1: A subset of two Landsat TM images of Boulder, 
Colorado are used as examples in this chapter. 
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Figure 2.21: Direct multidate classification. The right side is a 
breakout of the various classes. Classes 3 and 7 contain change 

information. 
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Figure 2.22: A scatter plot of three classes. 
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Figure 4.1: Site layout at Redstone Arsenal (from Smith and 
Schwartz, 1997). 
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Figure 4.2:   Vehicle positions in the CARD SHARP field of view. 

115 



fc.4 / 

M0 
* M^ > ~'~~. 

Figure 4.3: The M1E1 Abrams MBT positioned at site SI with 
woodland camouflage. 

Figure 4.4: The M1E1 Abrams MBT positioned at site SI without 
camouflage. 
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Figure 4.5: A composite image consisting of Landsat TM (bands 
1, 2, and 3), a color aerial photograph mosaic, and the two 

SEBASS images used for this study. 
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Figure 5.4: Ground truth spectra acquired during CARD SHARP 
fortheM-60AMBT. 
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Figure 5.5: A variety of difference spectra produced by subtracting the 
spectrum at a given pixel location in the 10 October image from the spectrum 

at the same pixel location in the 11 October image. 
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M-60 Ground Truth and Real Data 
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Figure 5.7: A comparison of SEBASS and ground truth difference 
data for the M-60A MBT with and without camouflage. 
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Figure 5.18:   A scatter plot for CARD SHARP difference band 27 (9.16 urn) and 
band 33 (9.50 um). 
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Camp Pendleton Supply Depot — Band 51 
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Figure 5.21:   Image differencing result for band 51 (10.28 um) of the Camp Pendleton 
data. Two genuine changes are indicated at A and B. 
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Figure 5.22:  A sample of three spectra across change A in Figure 5.21. 

121 



Camp Pendleton Supply Depot 
Position (43, 137) 

Change Result (9.06fm) 

10 11 

Wavelength 

Figure 5.24:  A sample of five spectra across change B in Figure 5.21. 
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Figure 5.25:   The two-dimensional scatter plot comparing 
difference bands 28 and 51. 
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Figure 5.28:   The principal component rotation of the scatter plot in Figure 5.25 The 
change class are now at the top of the plot. 
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Figure 5.29:   Spectral angle result for the Camp Pendleton data. 
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Figure 5.30:  A tighter view of Figure 5.29. 
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Figure 5.31:   A sample of spectra from pixels that exhibit high 
change in the spectral angle result. 
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Change Detection on SEBASS, MCAS Camp Pendleton 
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Figure 5.32:  A sample of pixels representing varying degrees of change. 
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